
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-5736: Reconfigurable Computing Summer I 2020

1 Instructor: Daniel Llamocca

Homework 3
(Due date: June 9th)

PROBLEM 1 (20 PTS)
▪ Performance Analysis: Iterative Integer Divider vs. Pipelined Integer Divider (N=M=16):

✓ Iterative Divider Operation: Input data (16-bit A, 16-bit B) is read when the s signal (a one-cycle pulse) is asserted.

After N+1=17 cycles, the result (16-bit Q, 16-bit R) is ready with done=1. Only after this, we can feed new data.

To process data as fast as possible, we must issue s=1 (with new data) right after done=1.

✓ Pipelined Divider Operation: The circuit reads input data (16-bit A, 16-bit B) when the enable (E) signal is asserted.

After a processing delay of N=16 cycles, the result (16-bit Q, 16-bit R) is ready and it is signaled by v=1. Unlike the

iterative divider, we can continuously feed data (with E=1).

To process data as fast as possible, we must keep E=1 (with new data) every clock cycle.

▪ An operation is defined as the computation of one input data set. The processing cycles for P operations is given by:

✓ Iterative Divider: It can compute P operations in P(N+2) cycles (1 operation is processed in N+1 cycles, but there is a

one cycle delay before we can start the next operation)

✓ Pipelined Divider: It can compute P operations in N + (P-1) cycles.

▪ In the following table, complete the number of processing cycles, processing times (us), and operations per second.

✓ Use TCLOCK = 8 ns (same as the PL_CLK = 125 MHz input clock in ZYBO or ZYBO Z7-10)

✓ The metric Operations per second is an average based on a given number of operations. Example: if a circuit can process

20 operations in 1 us, then we have
20 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

1 𝑢𝑠
 = 20 × 106 operations per second.

 Iterative Divider Pipelined Divider

P
Processing

cycles

Processing

Time (us)

Operations per

second

Processing

Cycles

Processing

Time (us)

Operations per

second

100

1000

10000

100000

▪ For the Iterative Divider: Is the Operations per second constant? Yes or No? Why?

▪ For the Pipelined Divider: If P →:

✓ How many operations are computed per cycle?

✓ What is the Operations per second?

D17D16D1D0

clock

s

done

...

...
Processing C y cles=N+1

E

v ...
Latency = N cy cles

...

...

clock ...
DI ...

Q17Q16Q1Q0DO ...

...

...

D1D0DI D2...

Q1Q0DO ...

It
e
ra

ti
v
e

D
iv

id
e
r

P
ip

e
lin

e
d

D
iv

id
e
r DI = |A|B|

DO = |Q|R|

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-5736: Reconfigurable Computing Summer I 2020

2 Instructor: Daniel Llamocca

PROBLEM 2 (15 PTS)
▪ The figure shows the 2D DCT IP AXI4-Full Peripheral. It includes a Reconfigurable Partition (RP). For this particular PR

implementation, we allow for N to be run-time reconfigurable (N=4,8,16), while we fix the parameters B=NO=8.

▪ The input and output of the 2D DCT IP require more than 32 bits when N = 8, 16. This requires an Input interface to the

iFIFO and an Output interface to the oFIFO. The figure shows the different interfaces for each N (4, 8, 16) when B=NO=8.

As the FSM @ CLK_FX controls data flow from the input and the output, it depends on N.

S_AXI_AWID

S_AXI_AWADDR

S_AXI_AWLEN

S_AXI_AWSIZE

S_AXI_AWBURST

S_AXI_AWVALID

S_AXI_AWREADY

S_AXI_WDATA

S_AXI_WSTRB

S_AXI_WLAST

S_AXI_WVALID

S_AXI_WREADY

S_AXI_BID

S_AXI_BRESP

S_AXI_BVALID

S_AXI_BREADY

6

axi_arv _arr_flag

32

4

S_AXI_ARID

S_AXI_ARADDR

S_AXI_ARLEN

S_AXI_ARSIZE

S_AXI_ARBURST

S_AXI_ARVALID

S_AXI_ARREADY

S_AXI_RDATA

S_AXI_RRESP

S_AXI_RLAST

S_AXI_RVALID

S_AXI_RREADY

S_AXI_RID

8

3

2

2

6

8

3

2

2

32

mem_rden
mem_wren

a
x
i_

rv
a
lid

iFIFO

FWFT

DO
rden

DI
w ren

fu
ll

e
m

p
ty

512x32

rst

FSM

oFIFO

FWFT

DO
rden

DI
w ren

fu
ll

e
m

p
ty

512x32

rst

FSM

S_AXI_ACLK

CLKFX

oempty

orden

iempty

if ull

2D DCT IP

E v

X

In
pu

t I
nt

er
fa

ce
rst

...

Output
Buf f er

8
x

N

N
8

x
N

O
ut

pu
t I

nt
er

fa
ce

Y

irden

owren

32 32

N

S_AXI_ARESETN

PR_reset

RP

B=NO=8

3
2

3
2

3
2

3
2

3
2Y

2D DCT IP

E v

X

DCT 4x4
B=NO=8

rst

DODI

Eri

3
2

6
4

DI

Y

2D DCT IP

E v

X

DCT 8x8
B=NO=8

rst

1
2
8

Y

2D DCT IP

E v

X

DCT 16x16
B=8,NO=8

rst

Eri

2

1

0

3
2

3
2

3
2

DI

6
4

s

3
2

3
2

0

1

3
2

DO...

Output Buf f er

6
4

3
2

1
2
8

s

3
2

3
2

0

1

2

3

3
2

DO

2

3
2

...

Output Buf f er

1
2
8

E
_

b
u

f

E
_
b
u
f

8

16

N=4 N=8

N=16

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-5736: Reconfigurable Computing Summer I 2020

3 Instructor: Daniel Llamocca

▪ We want to build a dynamically reconfigurable system, where we can change N (4, 8, 16) at run-time:

✓ The RP (Reconfigurable Partition) is depicted in the figure. The Output Buffer, the Input interface and the output interface

to FIFOs, as well as the FSM @ CLK_FX are included in the RP. Why is this necessary?

✓ Signal rst: Active-high signal generated by the FSM @ S_AXI_ACLK. It resets the 2D DCT IP, the red FSM, and the FIFOs.

Why is this signal important? Do we assert this signal before or after performing DPR? Why?

✓ The RP outputs toggle during DPR. What could happen to the contents of oFIFO during DPR?

PROBLEM 3 (65 PTS)
▪ Attach your Project Status Report (no more than 1 page, single-spaced, 2 columns, only one submission per group). This

report should contain the current status of your project. For formatting, use the provided template (Final Project –

Report Template.docx). The sections included in the template are the ones required in your Final Report. At this stage,

you are only required to:
✓ Include a project description.
✓ Specify a (tentative) allocation of tasks in: i) software routine, and ii) reconfigurable hardware.

 If you plan to use run-time alterable hardware, indicate what tasks it will be doing.
✓ Hardware Architecture: Include a Draft Block Diagram with (tentative) I/O description and I/O mechanism.

▪ As a guideline, a generic hardware/software partitioning of an application is depicted. The figure shows the tasks performed

by the software routine and the PS peripherals we plan to use. It also shows a Block Diagram of the Hardware with generic
I/Os. The Reconfigurable Partition (RP) is also depicted. Note that this hardware uses external I/Os to the PL.

Software Application:
Reads data from SD card
Sends data to AXI Peripheral
Retrieves data from AXI Peripheral
Write data on SD crad

A
X
I
in

te
rf

a
c
e

Hardware
IP

PS PL

ARM

memory
controller

SD
ctrl

UART

In
p

u
ts

O
u

tp
u

ts

...

...

RP

Block Diagram

